

Surface Area and Volume of Spheres

The ______ of a sphere is the biggest circle that can be drawn on the surface of the sphere itself.

Deriving the formula of a Sphere

In order to derive this formula we first have to see the relationship between a cylinder with similar radius and height.

Deriving the formula of a Sphere

What's the volume of the this cylinder in terms of the given variables?

Deriving the formula of a Sphere

How much of the cylinder was filled by the sphere?

<u>Deriving the formula of a Sphere</u>

From the video we saw that the sphere would fill will up 2/3 of the cylinder.

Using some algebra...

Volume Formula for a Sphere

Find the volume. Round the nearest 0.1.

2) Cylinder with hemisphere taken out of the top

Surface Area Formula for a Sphere

Find the total surface area. Round the nearest 0.1.

PRACTICE Find the surface area. Exact form.

PRACTICE Find the surface area. Exact form.

